A

Software Design And
Architecture

Property

Tags SWE 316

Lecture 11 - Basic Concepts & Styles - |

¥ Process is not as important as architecture
True
¥ The architecture of the Web is wholly separate from the code
True
v What is software design?
It as an activity that creates part of a system's architecture
v What are the main concerns in design phase?
1. Define the system's structure
2. ldentification of its primary components
3. The components interconnections
v What is an architecture?
It denotes the set of principal design decisions about a system
¥ What is the point behind the design phase?

Is to translate the requirements into algorithms, so programmer can
implement them

¥ What is architecture-centric design method?

It is a method that ensures the following points

Software Design And Architecture

1. Avoid stakeholder issues
2. Decision about use of COTS component

3. Develop package and primary class structure

Lecture 12 - Basic Concepts & Styles - Il

v What is software architecture?
Is the set of principal design decisions about the system

"Principal" - Important decision

¥ Why defining the software architecture is important?

Because it discuss key points on the system

—_—

. The description of elements from which systems are build
2. Interactions among those elements

3. Patterns that guide their compositions

4. Constraints on these patterns

¥ What is the meaning of temporal aspect?

Architecture has a temporal aspect which means at any give point in time
the system has only one architecture and it can change over time

v What is the difference between prescriptive and descriptive architecture?

Prescriptive - The architecture before the system is constructed (as
planned)

Descriptive - The architecture after the system has been build (as
implemented)

v What are software components?
Elements that encapsulate processing and data in a system's architecture

v What are the characteristics of a software component?

Software Design And Architecture

1. Encapsulates a subset of the system's functionality and/or data
2. Restricts access to that subset via interface
3. Has explicitly defined dependencies

¥ What is a software connector?

It is an architectural building block tasked with effecting and regulating
interactions among components

v Give an example of a software connector
1. Procedure call
2. Shared data accesses
3. APIs
4. Event
v What is the meaning of architectural configuration (topology)?

Is a set of specific associations between the components and connectors
of a software system's architecture

v Give an example of an architecture configuration

Software Design And Architecture

S_[Deplay
C_Display Manager
Banagar
N Asymmelnc 7 Ay mmeL

C_Troops
Manager }
Display c Drata C_App
Manager RODWM Manager
Fl
Asymmeiric

Decinion "'-.,__‘_
Module |
I_
aployment Simulation
Advisor Ageant
Offensive
Strategy
= T 7
Deployment
N Strategies R Da"f‘
Raposlmry apos tory

[Symmetnc |

u
Defonsive
Strategy
v

Lecture 13 - Basic Concepts & Styles - i

¥ What are architectural styles?
A collection of architectural design decisions

v What are the characteristics of architectural styles?

1. They are applicable in a given development context (specific
scenarios)

2. Constrain architectural design decisions that are specific to a
particular system within that context

3. Acquire beneficial qualities in each resulting system
¥ List some common architectural styles

1. Client-server

2. Pipe and filter

Software Design And Architecture

Blackboard
Interpreter
Event-based

Publish-subscribe

N o o M

Peer-to-peer
v Describe the client-server style
1. Components - Clients and servers
2. Connectors - Remote procedure calls, network protocols
3. Data elements - Parameters and return values as send by connectors

4. Typical use - Applications where centralization of data is required and
business applications

Topology
CLIENT 1 CLIENT 2 CLIENT n
Get/Display Info Get/Display Info Get/Display Info
Graphics Graphics Graphics
Processing FProcessing Processing

)

Procedure Call

I—1

in: burnfate

out: altitude, fuel, time, velocty

)

Frocedure Call

I 1

)

Procedure Call

I 1

SERVER:
Game State
Game Logic
Enviranment

Simulation

v Describe the pipe and filter style

Separate programs are executed, potentially at the same time; data is

passed as a stream from on program to the other

Software Design And Architecture

1. Components - Independant programs (Filters)
2. Connectors > Explicit routers of data streams (Pipes)
3. Data elements - No specific form, but it must be linear data stream

4. Typical use - Operating system application

Topology

Filter Filter Pipe

Filter Filter |lixe @
Pipe l

¥ What are the advantages of pipe and filter style?

1. System behavior is a succession of component behaviors
2. Filter addition, replacement, and reuse is easy
v What are the disadvantages of pipe and filter style?
1. Batch organization of processing
2. Interactive applications
3. Lowest common denominator on data transimission
v Describe the blackboard style

Independent programs access and communicate exclusively though a
global data repository, known as a blackboard

1. Components - Independent programs (Knowledge sources)

Software Design And Architecture

2. Connectors - Access to the blackboard may be by direct memory
reference or can be through a procedure call or a database query

3. Data elements - Data stored in the blackboard

4. Typical use - Heuristic problem solving in artificial intelligence
applications

Topology

Compute new
En}?ufrguurge?te Display values values and
. Update

Provides: br Obtains: a, f,t, v Ohtains: a, br, 1,1, v

Provides: a, 1 t, v

bl
Data Access

1

)

Blackboard
Data Storage (altitude, burnRate, fuel,
time, velocity)

¥ Describe the interpreter style

Interpreter parses and executes input commands, updating the state
maintained by the interpreter

1. Components - Command interpreter (Program, Ul)

2. Connectors - Closely bound with direct procedure calls and shared
state

3. Data elements > Commands

4. Typical use - End-user programmability; supports dynamically
changing set of capabilities

Example = Lisp, Word/Excel macros

Software Design And Architecture

Topology

et Camirmmanc
fTromm usarnr
(Burm, S03%

(CCheck Statu=)

=tr (]

1

im: lim=s of cocle
Ot res=ull Of Caocde
= st ey

INnterpret and
Execul=

_v./_L\.s

Chata Access Coata Accaess
I L |

im: wvariable upd stecd Ip N al=lnl=
re=_lt of cg:'ﬁ\ﬂv\ Aariabla upclate o -

Exxaeciated resul of cocde

U [o e = =soeEnsrtecd
INnt=arprataer State

Lecture 14 - Basic Concepts & Styles - IV

v Describe the publish-subscribe style

Subscribers register/deregister to receive specific messages or specific
content (sync and async)

1. Components - Publishers, subscribers, proxies
Connectors - Network protocol

Data elements = Subscription, notifications, published information

w0 DN

Typical use - Graphical user interface programming, multiplayer
network based games

Software Design And Architecture

Topology

Subscriber 1 Subscriber 2 Subscribern

in: new terrain,
spacecraft
out: none

L= 1 Bl | L LT
Stream Stream Event Stream
1 ™ = L

in: register, req info
out: hone

Game Server

v What is a software middleware?

It is a software that provides services to software applications beyond
those available from the operating system (Software glue)

¥ Describe the event-based style

Independent components asynchronously emit and receive events
communicated over event buses

1. Components - Independent event generators and/or consumers
Connectors - Event buses (at least one)

Data elements > Events - data sent over the event bus

e

Typical use - Graphical user interface programming, mobile
applications

Topology

Software Design And Architecture

SpacecCraft

Send: br T Send: a,br, f, v

Clock

IEend: ti(sec)

a, v

a, f,v
Event
Send: a,f, v Send: a, br, f, v Send: hI Send:

Game Logic

v Describe the peer-to-peer style

[

GUI

State and behavior are distributed among peers which can act as either

clients or servers

1. Components - Nodes (Peers) (Independent from each other)

P D

collaboratively

Topology

Software Design And Architecture

Connectors - Network protocol

Data elements - Network protocols

Typical use - Share resources and help computers and devices work

10

Ll
Siream
]

Hd

v What is the difference between BitTorrent and Peer-to-peer?

BitTorrent is very different from P2P sharing protocols because it does not
have any search functionality in the protocol and no content localization

¥ How BitTorrent works?

A peer is in the seed state if it has the complete file and is uploading to
leechers (should be at least on seeder). The leecher state is when you
download the file.

BitTorrent is a hybird of client-server and peer-to-peer
v Does BitTorrent have a centralized server?

Yes, and it is called "tracker". And its responsibility is to help peers find
other peers

v What is google file system (GFS)?

It is a system designed to provide efficient reliable access to data using
large clusters of commodity hardware

¥ What are the contents of google file system?
1. Chunk server - Split file into chunks

2. Master - Has access to chunks, stores metadata

Software Design And Architecture

(X

3. Client library - Can talk to the master to find chunk servers

File 1 J
Chunk 1

File 1
Chunk 2 h

File 2
Chunk 1

Fika 1 J‘
Chunk 2

File 1 -
Chunk 1 redundant

File 2
Chunk 2

File 1 Jp
Chunk 2

File 2
Chunk 1

File 2
Chunk 2

v What is map-reduce?

MapReduce is a framework which we can write applications to process
huge amounts of data in parallel.

¥ When to use map-reduce?

—_—

. To process big data
2. Index google search
3. Spam detection for e-mail
4. Data mining
5. Ad optimization
¥ How map-reduce works?

Hadoop map reduce operate in three main steeps
1. Mapping = Split the string into individual tokens
2. Shuffle - Values are sorted in an alphabetical order

3. Reducer = Values of the keys are added up

Software Design And Architecture

12

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result
Deer, 1 e M
= Bear, 1
Deer Bear River Bear, 1 \
River, 1
el Car, 1
&) o
Deer Bear River Car, 1 Car, 1 Car, 3
Car Car River Car Car River Car, 1 Deer, 2
Deer Car Bear River, 1 River, 2
Deer, 1 Deer, 2
Deer, 1
Deer, 1
Deer Car Bear Car, 1
Bear, 1 River, 1 River, 2
River, 1

Lecture 15 - Principles of Package Design

v What are the principles of package cohesion?

1. The common closure principle (CCP) - Classes that change together
should belong together

2. The common reuse principle (CRP) - Classes that aren't reused
together should not be grouped together

3. Reuse-release equivalence principle (REP) - If you make something
reusable, release the whole thing as a single item

v What does a stable packages means?

It means that the packages is hard to change

v How to calculate the stability of a package?

Software Design And Architecture

13

Ca - Incoming dependencies
Ce - Outgoing dependencies
1 = Stable

0 = Instable

g = Ca
Ca + Ce

¥ What are the principles of package coupling?

1. Acyclic dependencies principle (ADP) - The dependencies between
packages must not form cycles

2. Stable dependencies principle (SDP) - The dependencies between
packages should be in the direction of the stability of the packages
(should depend on more stable packages)

3. Stable abstractions principle (SAP) - Stable packages should be
abstract packages, while instable package should be concrete

v What is abstractness matrix?

It is the ratio of abstract classes in a package to the total number of
classes in the package

0 = Has no abstract classes

1 = Has only abstract classes

Lecture 16 - Principles of Class Design - |

¥ What are the four principles of class design (SOLID) ?
1. Single-responsibility principle
2. Ope closed principle
3. Liskov substitution principle
4. Interface segregation principle
5

. Dependency inversion principle

Software Design And Architecture

14

¥ What is the single-responsibility principle?

A class should have one and only one reason to change (should only have
one job)

¥ Why it is important to have only one responsibility for a class?

Because it reduces the dependency to this class. Also, you can save a lot
of testing time and create a more maintainable software

v Identify the issue in the given code

String title

String author

String petTitle

return title

vold setTitle(String title

this.title title

String petAuthor

return author

old setAvthor{String auvthor

wthor author

This class violates the single-responsibility principle because it has two
responsibilities (initialize the object for a book, and searches for a book in
the inventory)

We can solve this issue by creating another class which will be responsible
for checking the inventory, and by that the "Book" class will have only one
responsibility

Software Design And Architecture

15

class InventoryView

Book book

InventoryView Book book

this _book = book

void searchBook

=< Java Class>> << Java Clasg>=
(9 Book (2 Book
A"Book() A'Book()

& getTitle{):Stnng
& setTitle(Stnng). voed

& geilitle(): Stning
a setTitle(String):void

4 getAuthor():Stnng & getAuthor(): String
& setAuthor{String):void & setAuthor{Stnng):void
4 searchBook():void N

<< Java Class>>

(& InventoryView

a'lnventoryView(Book)
& searchBook{):void

v What is open closed principle?

A module should be opened for extension but closed for modification. You
should never modify a class that already exist, you can add new feature by
extending your code rather than modifying the original class.

Software Design And Architecture 16

Lecture 17 - Principles of Class Design - Il

¥ What is liskov substitution principle?

An object of a superclass should be replaceable by objects of its
subclasses without causing issues in the application (A child class should
never change the characteristics of its parent class)

¥ How can you implement liskov substitution principle?

By paying attention to the correct inheritance hierarchy

S.0LILD

Substitution

s
K % 2} Liskov
m P@é@ (% Principle

LEARN

stuff

In this example all these objects are vehicle, but the issue is that all of
them have wheels excluding the helicopter. Hence, if we have a method
called "changeWheels()" we can't use it with the helicopter object that is
why this example has a bad inheritance hierarchy. We can add additional
layer with two classes one for vehicles with wheels and the other for
vehicles without wheels

v What is interface segregation principle?

It state that interfaces shouldn't include too many functionalities so
classes will not be forced to implement unnecessary methods

Software Design And Architecture 17

¥ How to implement interface segregation principle?

Try to create smaller interfaces with specific functionalities (Increase
reusability)

v What is the goal of dependency inversion principle?

The goal is to avoid tightly coupled code (this principle is a combination of
open/close and liskov substitution)

1. High-level modules should not depend on low-level modules both
should depend on abstraction

2. Abstraction should not depend on details. Details should depend on
abstraction

High-level modules >
v How to implement the dependency inversion principle?

You need to create and abstract layer for the low-level classes, so that
high-level classes can depend on this abstract layer instead of depending
on the low-level classes directly

Calculator Higher Level Modules

v

==|Calculator Abstraction

Operation==

Add Subtract Multiply Divide
Calculator Calculator Calculator Calculator
Operation Operation Operation Operation

—
——

Lower Level Modules

¥ What are the effect on the code when implementing SOLID principles?

Software Design And Architecture

It will increase the overall complexity of the code, but the design will be
more flexible

Lecture 18 - Design Patterns - |

v What are design patterns?

Design patterns are description of communicating objects and classes that
are customized to solve a general design problem in a particular context

¥ What are the types of design patterns?
1. Creational - Used to create objects in flexible or constrained ways

2. Structural - Used to describe the organization of objects and how
classes and objects are composed to form larger structures

3. Behavioral - Capturing behavior among a collection of objects during
execution

v List examples about creational design patterns
1. Factory
2. Abstract factory
3. Singleton
4. Prototype
5. Builder

V¥ List examples about structural patterns
1. Adapter
2. Proxy

3. Bridge

4. Facade

5. Decorator

v List examples about behavioral patterns

Software Design And Architecture

19

1. State
2. Observer
3. Iterator
4. Mediator
v What is a singleton design pattern?

Design pattern that lets you ensure that a class has only one instance,
while providing a global access point to this instance.

v What are the benefits of the singleton design pattern?
1. Controlled access to one instance
2. Permits a variable number of instances
3. More flexible than class operations

v How to implement singleton design pattern?

1. Make the default constructor private, to prevent other objects from
using the new operator with the Singleton class.

2. Create a static creation method that acts as a constructor. Under the
hood, this method calls the private constructor to create an object and
saves it in a static field. All following calls to this method return the
cached object.

Singleton -

- instance: Singleton

- Singleton()
Client —=| + getinstance(): Singleton

if (instance == null) {
/i Note: if you're creating an app with
/f multithreading support, you should
/f place a thread lock here.
instance = new Singleton()

}

return instance

¥ When to use singleton design pattern?

Software Design And Architecture 20

Use the Singleton pattern when a class in your program should have just a
single instance available to all clients; for example, a single database
object shared by different parts of the program.

¥ What is a factory design pattern?

Design pattern that provides an interface for creating objects in a
superclass, but allows subclasses to alter the type of objects that will be
Created.

v How to implement factory design pattern?

The Factory Method pattern suggests that you replace direct object
construction calls (using the new operator) with calls to a special factory
method. Objects returned by a factory method are often referred to as
products.

Product p = createProduct()

p.doStuffi)
Creator
«interface»

_____________________ Product

+ someQperation() >

+ createProduct(): Product + doStuff()

[I P i
ConcreteCreatorA ConcreteCreatorB Concrete Concrete

+ createProduct(): Product + createProduct(): Product

return new ConcreteProductAl)

¥ When to use factory design pattern?

Use the Factory Method when you don't know beforehand the exact types
and dependencies of the objects your code should work with.

Lecture 19 - Design Patterns - i

Software Design And Architecture

21

v What is an abstract factory pattern?

Design pattern that lets you produce families of related objects without
specifying their concrete classes. (Factory of factories)

¥ How to implement an abstract factory?

Overall same as the factory but the difference is that abstract factory
create multiple object types instead of one

AbstractFactory AbstractFactory
FactoryProducer
_uses Y L ysSes PatternDemo
+getFacto :
+getShape() : Shape Abg:_;tractFagt{J, +main() : void
_CDSIFSCIFSCTOn,
+getColor() : Color
4 extends
extends I
ShapeFactory ColorFactory
+getShape():Shape +getColor():Color
creates creates
L
Shape <lnterface=>> Color =z<Interface>>
+drawl) : void +fill{} : void
implements implements
l implement L l implement J
Circle Square Rectangle Red Green Blue

Software Design And Architecture

ConcreteFactoryl
e .
i i + createProductA(): ProductA
\P \IV + createProductB(): ProductB
H
Concrete Concrete H
ProductAl| |ProductBl v
{7 {7 «interface» Client
AbstractFactory - factory: AbstractFactory
ProductA ProductB P AD: ProductA
+ ceatervoductivl); Frocu + Client(f: AbstractFactory)
43 ['3 + createProductB(): ProductB + someOperation()
Concrete Concrete 1.'}
Prm:\nhz Product82 i ProductA pa = factory.createProductA()
! 4:\ ConcreteFactory2
AR S
return new + createProductA(): ProductA
ConcreteProductad(} + createProductB(): ProductB

¥ When to use abstract factory?

Use the Abstract Factory when your code needs to work with various
families of related products, but you don't want it to depend on the
concrete classes of those products—they might be unknown beforehand
or you simply want to allow for future extensibility.

v What is a prototype design pattern?

Design pattern that lets you copy existing objects without making your
code dependent on their classes.

¥ How to implement prototype design pattern?

The Prototype pattern delegates the cloning process to the actual objects
that are being cloned. The pattern declares a common interface for all
objects that support cloning. This interface lets you clone an object
without coupling your code to the class of that object. Usually, such an
interface contains just a single clone method.

Software Design And Architecture

23

shape

-id : String
+Lype :5tring
+getType() :void
+getid() : String
+setld() : void

+clone(): Object
[3

PrototypePatternDemo

+main(} : void

extends extends ! asks
ShapeCache
eafmocs _clones | -shapeMap : HashMap
Circle Rectangle Square +getshape() : Shape
+loadCache(): void
-type : String -type : String -type : String
+HetType() : void +getType() : void +getType() :void
+getid() - 5tring +getid() : 5tring +getid() : string
+setid() : void +setld() : void +setid() : void
+Clone(): Object +clone(): Object +clone(): Object

Client

l

button = new Button(10, 40, “red")
registry.addltem(LandingButton”, button)

button = registry.getByColor(red”)

PrototypeRegistry

- items : Prototype(]

+ addltem(id: string, p: Prototype)
+ getByld(id: string): Prototype
+ getByColor(color: string): Prototype

winterfaces
Prototype

foreach (item in items)
if (item.getColor{) == color)
return item.clone()

Software Design And Architecture

+ getColor(): string
+ clone(): Prototype

A

Button

- X, v, color

+ Button(x, y, color)
+ Button(prototype)
+ getColor(): string

+ clone(): Prototype

return new Button(this)

24

¥ When to use prototype design pattern?
1. When creation of object is directly is costly

2. Use the Prototype pattern when your code shouldn’t depend on the
concrete classes of objects that you need to copy.

3. When you want to add or remove products at run-time

Lecture 20 - Design Patterns - i

v What is a builder design pattern?

Design pattern that lets you construct complex objects step by step. The
pattern allows you to produce different types and representations of an
object using the same construction code.

¥ How to implement a builder design pattern?

The Builder pattern suggests that you extract the object construction code
out of its own class and move it to separate objects called builders.

Item Meal MealBuilder
_ Uses -items : Ammaylist <item> ke builds
+name() : String +additem(item item) : void +prepareVegMeal() :
+packing() : Packing +getCost() : float Meal
+price() : float +showltems() : void +prepareNanVegMeal()
* : Meal
implement T
ks
Packing -
BuilderPattern
Demo
implement implement +main() : void
Burger - Wrapper Bottle uses ColdDrink
F 3 T
[extend extend
VegBurger ChickenBurger Pepsi Coke

v When to use builder design pattern?

Software Design And Architecture

Use the Builder pattern when you want your code to be able to create
different representations of some product (for example, veg meal or non
veg meal).

Lecture 21 - Structural Design Patterns - |

v What is a facade design pattern?
Is a structural design pattern that provides a simplified interface to a
library, a framework, or any other complex set of classes.

¥ How to implement a facade design pattern?

Declare and implement an interface. The facade should redirect the calls
from the client code to appropriate objects of the subsystem. The facade
should be responsible for initializing the subsystem and managing its
further life cycle unless the client code already does this.

(VideoConverter is a facade)

VideoConverter

Application ——= ...

+ convertVideo(filename, format)

L

——
i .

VideoFile
AudioMixer BitrateReader

CodecFactory

OggCompression MPEG4
Codec CompressionCodec

Software Design And Architecture

26

FacadePatternDemo

smain() 3 vaid

shape <<interfaces>

asks

w

ShapeMaker

+dranw(] : void

imnplarmaents

=gircle : Shape
imiplament Creates | rectangle : shape
sQuare; Shape

Circle Rectangle Square

+ShapeMaker()
sdrawCircle{) : void
+drawRectangle() : void
+drawSquare() : void

+draw) : void wdraw() : void sdraw() : void

¥ When to use facade design pattern?

1. To hide the complexity of the system and provide easy interface to the
client to use

2. To reduce dependencies between the client and the subsystem

v What is a decorator design pattern?

Is a structural design pattern that lets you attach new behaviors to objects
by placing these objects inside special wrapper objects that contain the
behaviors.

v How to implement decorator design pattern?

Create a decorator class which wraps the original class and provides
additional functionality

Software Design And Architecture

27

Client

!

«interface»

DataSource
-
+ writeData(data)
+ readData()
i _____________ -
FileDataSource DataSourceDecorator

- filename

- wrappee: DataSource

+ FileDataSource(filename)
+ writeData(data)

+ DataSourceDecorator(s: DataSource)
+ writeData(data)

+ readData() + readData()
Encryption Compression
Decorator Decorator
+ writeData(data) + writeData(data)
+ readData() + readData()
‘I" DecoratarPatternDemo
Shape <<interface=>
+main(] :woid
+draw() : vaid decorates
4
ShapeDecorator asks
4+shape :Shape |
Ll +ShapeDecorator|)
+draw(): void
Circle Rectangle F)
implements
+draw() : void +draw() : void RedShapeDecorator
+shape : Shape
+Red5hapeDecorator()
+draw(): void
-setRedBorder(} :woid

¥ When to use decorator design pattern?

Software Design And Architecture

28

1. Use the Decorator pattern when you need to be able to assign extra
behaviors to objects at runtime without breaking the code that uses

these objects.

2. Use the pattern when it is not possible to extend an object’s behavior

using inheritance.

Lecture 22 - Structural Design Patterns - Il

¥ What is an adapter design pattern?

It is a structural design pattern that allows objects with incompatible
interfaces to collaborate. (bridge between two interfaces)

v How to implement an adapter design pattern?

You can create an adapter. This is a special object that converts the
interface of one object so that another object can understand it.

(The adapter link the stock data provider with the analytics library by
changing the data format from XML to JSON)

Application

Core Classes

Stock Data
Provider @

Software Design And Architecture

i.#l XML I

XML to JSON

Analytics
30N Library

Adapter

29

cainterfaces=

Mediablaver AdapterFatiern
T Demo
+playl) : void wmain(] ©woid
ceinferface=>
AdvancediediaPlayer i nplemants g
+playWic]) @ void
-rﬂaqlhlﬂd-ll:'ﬂ}id
MediaAdapter dudioPlayer
-acvancedhiedia
ad ph::lh-'lud -mediaadapter : |J
wang ia
wicolayer MpdPlayer ”'”""5 Blaer uses) Mediaddapter
ehbedisddapter(): #play(] : void
woid
+playVLCH) = void +playVLL{) 2 void #play() : vold
+playMpd() : void | | +playMpai) : void

¥ When to use adapter design pattern?
1. When you try to compatible two incompatible interfaces

¥ What is a proxy design pattern?

Proxy is a structural design pattern that lets you provide a substitute or
placeholder for another object. A proxy controls access to the original
object, allowing you to perform something either before or after the
request gets through to the original object.

v How to implement a proxy design pattern?

The Proxy pattern suggests that you create a new proxy class with the
same interface as an original service object. Then you update your app so
that it passes the proxy object to all of the original object’s clients. Upon
receiving a request from a client, the proxy creates a real service object
and delegates all the work to it.

Software Design And Architecture

30

e e
5 Ty
Client \F--..__p-"'l DATABASE
| |
| |
Client - I Proxy | /V\/\%
I |
7 | '
Client Se———-T
Image <<Interfaces>
+isplay() : void

implements I implements

ProxyPatternDemo

Realimage Proxyimage

+fileName : String
+#realimage : Realimage aiks

+Reallmage() +ileMame :String |e W
adlisplay() : void +main() : void
+ioadfFromDiski) : #Proxyimage()

void +display() : void

¥ When to use proxy design pattern?
1. When you want to control access to an object
¥ What is bridge design pattern?

Bridge is a structural design pattern that lets you split a large class or a set
of closely related classes into two separate hierarchies—abstraction and
implementation—which can be developed independently of each other.

v How to implement bridge design pattern?
we divide the classes into two hierarchies:
e Abstraction (Device)

e Implementation (Remote)

Software Design And Architecture

31

N

abstraction.featurel()

ginterface»

E Remote Device
i . . + isEnabled()
i (device.isEnabled() | | | 9EVice: Device >, enable()
device.disable() i-| + togglePower() + disable()
else . ! |+ volumeDown() + getVolume()
device.enable() |+ volumeUp() + setVolume(percent)
! |+ channelDown() + getChannel()
old = device.getChannel() : + channelUp() + setChannel(channet)

device.setChannel{old+1)

% AdvancedRemote
device.setVolume(0) + mute()
<<Interface>>
Shape DrawaPi
uses +drawdPl : DrawapPl uses
> —
+5ha +void -
+dfam]n: String +drawCircle{) : void

L
extends

| implement I

RedCircle GreenCirche

BridgePatternDemo Circle

=¥, ¥, radius 1 int

+Circle() :void
#draw() : String

| uses [Uses [

+miainf) : void

+drawCircle() : void sdrawCircle(} : woid

¥ When to use bridge design pattern?

Lecture 23 - Behavioral Design Patterns -
Il

Software Design And Architecture

¥ What is iterator design pattern?

Iterator is a behavioral design pattern that lets you traverse elements of a
collection without exposing its underlying representation (list, stack, tree,
etc.).

¥ How to implement iterator design pattern?

Create an iterator interface which declares the operations required for
traversing a collection: fetching the next element, retrieving the current
position, restarting iteration, etc. Then implement it whenever you need to
use it.

<<Interface=> <interfaces>

Container Iterator

+hasNext(] : boolean

+getiterator() : Iterator snext{) : Object

[}
implemants implements
IteratorPatiernDemo NameRepository has Narmelterator
uses -
> -name : String [»

+hasMext(} : boolean
+nieut(] : Object

smain() : void +getiterator) : iterator

¥ When to use iterator design pattern?
1. To access elements of a collection object in a sequential manner

2. Use the pattern to reduce duplication of the traversal code across your
app.
v What is mediator design pattern?
Mediator is a behavioral design pattern that lets you reduce chaotic
dependencies between objects. The pattern restricts direct

communications between the objects and forces them to collaborate only
via a mediator object.

¥ How to implement mediator design pattern?

The Mediator pattern suggests that you should manage all direct
communication between the components which you want to make
independent of each other. Instead, these components must collaborate

Software Design And Architecture

indirectly, by calling a special mediator object that redirects the calls to
appropriate components. As a result, the components depend only on a
single mediator class

Profile Dialog Login Dialog
Button |<—3>| Dialog Y\(Button |e—s| Dialog
Button Tabs TextField

Checkbox TextField TextField
Checkbox

(Users do not have to have dependencies between each other, the
chatRoom(mediator) will handle it)

MediatorPatternDemo User T ChatRoom
Uses
M qameSting
+User() : void :
+main]) :void +getName() ; void #showhessagel) - vou
+5etName() : void
+sendMessage() : void

¥ When to use mediator design pattern?

1. Use the Mediator pattern when it’'s hard to change some of the classes
because they are tightly coupled to a bunch of other classes.

2. Reduce dependencies between components
v What is the observer design pattern?

Observer is a behavioral design pattern that lets you define a subscription
mechanism to notify multiple objects about any events that happen to the

Software Design And Architecture

object they’re observing (when there is one-to-many relationship between
objects)

¥ How to implement observer design pattern?
Observer design pattern has three classes

1. Subject - Object having methods to attach and detach observers to a
client object

2. Observer - An object that can access and manipulate the state

3. Client - Whoever interact with the system

ObserverPatternbemo
+main() :vaid
asks
k4
<<abstract=> Observer " uses Subject
ssubject : Subject | observers :
+update() : void List<Obsarvers
=state :int
-
extends
- +getstate() : int
l]eutend +5et5tate) : vold
serve tal HexaObserver +attach() : void
Slnaryt k QctalObsanr + notifyaliobs ervers|)
+iubject : Subject || +subject :Subject | +subject : Subject : woi
+update(] : woid +update{] : veid supdate]) :vaid

Software Design And Architecture

All the observers (Binary, Octal and Hexa) can access the state. And
whenever the state value will change, it will change in the all observers

35

