
Software Design And Architecture 1

🏗
Software Design And
Architecture

Property

Tags SWE 316

Lecture 11 - Basic Concepts & Styles - I
Process is not as important as architecture

True

The architecture of the Web is wholly separate from the code

True

What is software design?

It as an activity that creates part of a system's architecture

What are the main concerns in design phase?

 Define the system's structure

 Identification of its primary components

 The components interconnections

What is an architecture?

It denotes the set of principal design decisions about a system

What is the point behind the design phase?

Is to translate the requirements into algorithms, so programmer can
implement them

What is architecture-centric design method?

It is a method that ensures the following points

Software Design And Architecture 2

 Avoid stakeholder issues

 Decision about use of COTS component

 Develop package and primary class structure

Lecture 12 - Basic Concepts & Styles - II
What is software architecture?

Is the set of principal design decisions about the system

"Principal" → Important decision

Why defining the software architecture is important?

Because it discuss key points on the system

 The description of elements from which systems are build

 Interactions among those elements

 Patterns that guide their compositions

 Constraints on these patterns

What is the meaning of temporal aspect?

Architecture has a temporal aspect which means at any give point in time
the system has only one architecture and it can change over time

What is the difference between prescriptive and descriptive architecture?

Prescriptive → The architecture before the system is constructed (as
planned)

Descriptive → The architecture after the system has been build (as
implemented)

What are software components?

Elements that encapsulate processing and data in a system's architecture

What are the characteristics of a software component?

Software Design And Architecture 3

 Encapsulates a subset of the system's functionality and/or data

 Restricts access to that subset via interface

 Has explicitly defined dependencies

What is a software connector?

It is an architectural building block tasked with effecting and regulating
interactions among components

Give an example of a software connector

 Procedure call

 Shared data accesses

 APIs

 Event

What is the meaning of architectural configuration (topology)?

Is a set of specific associations between the components and connectors
of a software system's architecture

Give an example of an architecture configuration

Software Design And Architecture 4

Lecture 13 - Basic Concepts & Styles - III
What are architectural styles?

A collection of architectural design decisions

What are the characteristics of architectural styles?

 They are applicable in a given development context (specific
scenarios)

 Constrain architectural design decisions that are specific to a
particular system within that context

 Acquire beneficial qualities in each resulting system

List some common architectural styles

 Client-server

 Pipe and filter

Software Design And Architecture 5

 Blackboard

 Interpreter

 Event-based

 Publish-subscribe

 Peer-to-peer

Describe the client-server style

 Components → Clients and servers

 Connectors → Remote procedure calls, network protocols

 Data elements → Parameters and return values as send by connectors

 Typical use → Applications where centralization of data is required and
business applications

Topology

Describe the pipe and filter style

Separate programs are executed, potentially at the same time; data is
passed as a stream from on program to the other

Software Design And Architecture 6

 Components → Independant programs Filters)

 Connectors → Explicit routers of data streams Pipes)

 Data elements → No specific form, but it must be linear data stream

 Typical use → Operating system application

Topology

What are the advantages of pipe and filter style?

 System behavior is a succession of component behaviors

 Filter addition, replacement, and reuse is easy

What are the disadvantages of pipe and filter style?

 Batch organization of processing

 Interactive applications

 Lowest common denominator on data transimission

Describe the blackboard style

Independent programs access and communicate exclusively though a
global data repository, known as a blackboard

 Components → Independent programs Knowledge sources)

Software Design And Architecture 7

 Connectors → Access to the blackboard may be by direct memory
reference or can be through a procedure call or a database query

 Data elements → Data stored in the blackboard

 Typical use → Heuristic problem solving in artificial intelligence
applications

Topology

Describe the interpreter style

Interpreter parses and executes input commands, updating the state
maintained by the interpreter

 Components → Command interpreter Program, UI

 Connectors → Closely bound with direct procedure calls and shared
state

 Data elements → Commands

 Typical use → End-user programmability; supports dynamically
changing set of capabilities

Example → Lisp, Word/Excel macros

Software Design And Architecture 8

Topology

Lecture 14 - Basic Concepts & Styles - IV
Describe the publish-subscribe style

Subscribers register/deregister to receive specific messages or specific
content (sync and async)

 Components → Publishers, subscribers, proxies

 Connectors → Network protocol

 Data elements → Subscription, notifications, published information

 Typical use → Graphical user interface programming, multiplayer
network based games

Software Design And Architecture 9

Topology

What is a software middleware?

It is a software that provides services to software applications beyond
those available from the operating system Software glue)

Describe the event-based style

Independent components asynchronously emit and receive events
communicated over event buses

 Components → Independent event generators and/or consumers

 Connectors → Event buses (at least one)

 Data elements → Events - data sent over the event bus

 Typical use → Graphical user interface programming, mobile
applications

Topology

Software Design And Architecture 10

Describe the peer-to-peer style

State and behavior are distributed among peers which can act as either
clients or servers

 Components → Nodes Peers) Independent from each other)

 Connectors → Network protocol

 Data elements → Network protocols

 Typical use → Share resources and help computers and devices work
collaboratively

Topology

Software Design And Architecture 11

What is the difference between BitTorrent and Peer-to-peer?

BitTorrent is very different from P2P sharing protocols because it does not
have any search functionality in the protocol and no content localization

How BitTorrent works?

A peer is in the seed state if it has the complete file and is uploading to
leechers (should be at least on seeder). The leecher state is when you
download the file.

BitTorrent is a hybird of client-server and peer-to-peer

Does BitTorrent have a centralized server?

Yes, and it is called "tracker". And its responsibility is to help peers find
other peers

What is google file system GFS?

It is a system designed to provide efficient reliable access to data using
large clusters of commodity hardware

What are the contents of google file system?

 Chunk server → Split file into chunks

 Master → Has access to chunks, stores metadata

Software Design And Architecture 12

 Client library → Can talk to the master to find chunk servers

What is map-reduce?

MapReduce is a framework which we can write applications to process
huge amounts of data in parallel.

When to use map-reduce?

 To process big data

 Index google search

 Spam detection for e-mail

 Data mining

 Ad optimization

How map-reduce works?

Hadoop map reduce operate in three main steeps

 Mapping → Split the string into individual tokens

 Shuffle → Values are sorted in an alphabetical order

 Reducer → Values of the keys are added up

Software Design And Architecture 13

Lecture 15 - Principles of Package Design
What are the principles of package cohesion?

 The common closure principle CCP → Classes that change together
should belong together

 The common reuse principle CRP → Classes that aren't reused
together should not be grouped together

 Reuse-release equivalence principle REP → If you make something
reusable, release the whole thing as a single item

What does a stable packages means?

It means that the packages is hard to change

How to calculate the stability of a package?

Software Design And Architecture 14

Ca → Incoming dependencies

Ce → Outgoing dependencies

1 = Stable

0 = Instable

What are the principles of package coupling?

 Acyclic dependencies principle ADP → The dependencies between
packages must not form cycles

 Stable dependencies principle SDP → The dependencies between
packages should be in the direction of the stability of the packages
(should depend on more stable packages)

 Stable abstractions principle SAP → Stable packages should be
abstract packages, while instable package should be concrete

What is abstractness matrix?

It is the ratio of abstract classes in a package to the total number of
classes in the package

0 = Has no abstract classes

1 = Has only abstract classes

Lecture 16 - Principles of Class Design - I
What are the four principles of class design SOLID ?

 Single-responsibility principle

 Ope closed principle

 Liskov substitution principle

 Interface segregation principle

 Dependency inversion principle

Software Design And Architecture 15

What is the single-responsibility principle?

A class should have one and only one reason to change (should only have
one job)

Why it is important to have only one responsibility for a class?

Because it reduces the dependency to this class. Also, you can save a lot
of testing time and create a more maintainable software

Identify the issue in the given code

This class violates the single-responsibility principle because it has two
responsibilities (initialize the object for a book, and searches for a book in
the inventory)

We can solve this issue by creating another class which will be responsible
for checking the inventory, and by that the "Book" class will have only one
responsibility

Software Design And Architecture 16

What is open closed principle?

A module should be opened for extension but closed for modification. You
should never modify a class that already exist, you can add new feature by
extending your code rather than modifying the original class.

Software Design And Architecture 17

Lecture 17 - Principles of Class Design - II
What is liskov substitution principle?

An object of a superclass should be replaceable by objects of its
subclasses without causing issues in the application (A child class should
never change the characteristics of its parent class)

How can you implement liskov substitution principle?

By paying attention to the correct inheritance hierarchy

In this example all these objects are vehicle, but the issue is that all of
them have wheels excluding the helicopter. Hence, if we have a method
called "changeWheels()" we can't use it with the helicopter object that is
why this example has a bad inheritance hierarchy. We can add additional
layer with two classes one for vehicles with wheels and the other for
vehicles without wheels

What is interface segregation principle?

It state that interfaces shouldn't include too many functionalities so
classes will not be forced to implement unnecessary methods

Software Design And Architecture 18

How to implement interface segregation principle?

Try to create smaller interfaces with specific functionalities Increase
reusability)

What is the goal of dependency inversion principle?

The goal is to avoid tightly coupled code (this principle is a combination of
open/close and liskov substitution)

 High-level modules should not depend on low-level modules both
should depend on abstraction

 Abstraction should not depend on details. Details should depend on
abstraction

High-level modules →

How to implement the dependency inversion principle?

You need to create and abstract layer for the low-level classes, so that
high-level classes can depend on this abstract layer instead of depending
on the low-level classes directly

What are the effect on the code when implementing SOLID principles?

Software Design And Architecture 19

It will increase the overall complexity of the code, but the design will be
more flexible

Lecture 18 - Design Patterns - I
What are design patterns?

Design patterns are description of communicating objects and classes that
are customized to solve a general design problem in a particular context

What are the types of design patterns?

 Creational → Used to create objects in flexible or constrained ways

 Structural → Used to describe the organization of objects and how
classes and objects are composed to form larger structures

 Behavioral → Capturing behavior among a collection of objects during
execution

List examples about creational design patterns

 Factory

 Abstract factory

 Singleton

 Prototype

 Builder

List examples about structural patterns

 Adapter

 Proxy

 Bridge

 Facade

 Decorator

List examples about behavioral patterns

Software Design And Architecture 20

 State

 Observer

 Iterator

 Mediator

What is a singleton design pattern?

Design pattern that lets you ensure that a class has only one instance,
while providing a global access point to this instance.

What are the benefits of the singleton design pattern?

 Controlled access to one instance

 Permits a variable number of instances

 More flexible than class operations

How to implement singleton design pattern?

 Make the default constructor private, to prevent other objects from
using the new operator with the Singleton class.

 Create a static creation method that acts as a constructor. Under the
hood, this method calls the private constructor to create an object and
saves it in a static field. All following calls to this method return the
cached object.

When to use singleton design pattern?

Software Design And Architecture 21

Use the Singleton pattern when a class in your program should have just a
single instance available to all clients; for example, a single database
object shared by different parts of the program.

What is a factory design pattern?

Design pattern that provides an interface for creating objects in a
superclass, but allows subclasses to alter the type of objects that will be
created.

How to implement factory design pattern?

The Factory Method pattern suggests that you replace direct object
construction calls (using the new operator) with calls to a special factory
method. Objects returned by a factory method are often referred to as
products.

When to use factory design pattern?

Use the Factory Method when you don’t know beforehand the exact types
and dependencies of the objects your code should work with.

Lecture 19 - Design Patterns - II

Software Design And Architecture 22

What is an abstract factory pattern?

Design pattern that lets you produce families of related objects without
specifying their concrete classes. Factory of factories)

How to implement an abstract factory?

Overall same as the factory but the difference is that abstract factory
create multiple object types instead of one

Software Design And Architecture 23

When to use abstract factory?

Use the Abstract Factory when your code needs to work with various
families of related products, but you don’t want it to depend on the
concrete classes of those products—they might be unknown beforehand
or you simply want to allow for future extensibility.

What is a prototype design pattern?

Design pattern that lets you copy existing objects without making your
code dependent on their classes.

How to implement prototype design pattern?

The Prototype pattern delegates the cloning process to the actual objects
that are being cloned. The pattern declares a common interface for all
objects that support cloning. This interface lets you clone an object
without coupling your code to the class of that object. Usually, such an
interface contains just a single clone method.

Software Design And Architecture 24

Software Design And Architecture 25

When to use prototype design pattern?

 When creation of object is directly is costly

 Use the Prototype pattern when your code shouldn’t depend on the
concrete classes of objects that you need to copy.

 When you want to add or remove products at run-time

Lecture 20 - Design Patterns - III
What is a builder design pattern?

Design pattern that lets you construct complex objects step by step. The
pattern allows you to produce different types and representations of an
object using the same construction code.

How to implement a builder design pattern?

The Builder pattern suggests that you extract the object construction code
out of its own class and move it to separate objects called builders.

When to use builder design pattern?

Software Design And Architecture 26

Use the Builder pattern when you want your code to be able to create
different representations of some product (for example, veg meal or non
veg meal).

Lecture 21 - Structural Design Patterns - I
What is a facade design pattern?

Is a structural design pattern that provides a simplified interface to a
library, a framework, or any other complex set of classes.

How to implement a facade design pattern?

Declare and implement an interface. The facade should redirect the calls
from the client code to appropriate objects of the subsystem. The facade
should be responsible for initializing the subsystem and managing its
further life cycle unless the client code already does this.

VideoConverter is a facade)

Software Design And Architecture 27

When to use facade design pattern?

 To hide the complexity of the system and provide easy interface to the
client to use

 To reduce dependencies between the client and the subsystem

What is a decorator design pattern?

Is a structural design pattern that lets you attach new behaviors to objects
by placing these objects inside special wrapper objects that contain the
behaviors.

How to implement decorator design pattern?

Create a decorator class which wraps the original class and provides
additional functionality

Software Design And Architecture 28

When to use decorator design pattern?

Software Design And Architecture 29

 Use the Decorator pattern when you need to be able to assign extra
behaviors to objects at runtime without breaking the code that uses
these objects.

 Use the pattern when it is not possible to extend an object’s behavior
using inheritance.

Lecture 22 - Structural Design Patterns - II
What is an adapter design pattern?

It is a structural design pattern that allows objects with incompatible
interfaces to collaborate. (bridge between two interfaces)

How to implement an adapter design pattern?

You can create an adapter. This is a special object that converts the
interface of one object so that another object can understand it.

The adapter link the stock data provider with the analytics library by
changing the data format from XML to JSON

Software Design And Architecture 30

When to use adapter design pattern?

 When you try to compatible two incompatible interfaces

What is a proxy design pattern?

Proxy is a structural design pattern that lets you provide a substitute or
placeholder for another object. A proxy controls access to the original
object, allowing you to perform something either before or after the
request gets through to the original object.

How to implement a proxy design pattern?

The Proxy pattern suggests that you create a new proxy class with the
same interface as an original service object. Then you update your app so
that it passes the proxy object to all of the original object’s clients. Upon
receiving a request from a client, the proxy creates a real service object
and delegates all the work to it.

Software Design And Architecture 31

When to use proxy design pattern?

 When you want to control access to an object

What is bridge design pattern?

Bridge is a structural design pattern that lets you split a large class or a set
of closely related classes into two separate hierarchies—abstraction and
implementation—which can be developed independently of each other.

How to implement bridge design pattern?

we divide the classes into two hierarchies:

Abstraction Device)

Implementation Remote)

Software Design And Architecture 32

When to use bridge design pattern?

Lecture 23 - Behavioral Design Patterns -
II

Software Design And Architecture 33

What is iterator design pattern?

Iterator is a behavioral design pattern that lets you traverse elements of a
collection without exposing its underlying representation (list, stack, tree,
etc.).

How to implement iterator design pattern?

Create an iterator interface which declares the operations required for
traversing a collection: fetching the next element, retrieving the current
position, restarting iteration, etc. Then implement it whenever you need to
use it.

When to use iterator design pattern?

 To access elements of a collection object in a sequential manner

 Use the pattern to reduce duplication of the traversal code across your
app.

What is mediator design pattern?

Mediator is a behavioral design pattern that lets you reduce chaotic
dependencies between objects. The pattern restricts direct
communications between the objects and forces them to collaborate only
via a mediator object.

How to implement mediator design pattern?

The Mediator pattern suggests that you should manage all direct
communication between the components which you want to make
independent of each other. Instead, these components must collaborate

Software Design And Architecture 34

indirectly, by calling a special mediator object that redirects the calls to
appropriate components. As a result, the components depend only on a
single mediator class

Users do not have to have dependencies between each other, the
chatRoom(mediator) will handle it)

When to use mediator design pattern?

 Use the Mediator pattern when it’s hard to change some of the classes
because they are tightly coupled to a bunch of other classes.

 Reduce dependencies between components

What is the observer design pattern?

Observer is a behavioral design pattern that lets you define a subscription
mechanism to notify multiple objects about any events that happen to the

Software Design And Architecture 35

object they’re observing (when there is one-to-many relationship between
objects)

How to implement observer design pattern?

Observer design pattern has three classes

 Subject → Object having methods to attach and detach observers to a
client object

 Observer → An object that can access and manipulate the state

 Client → Whoever interact with the system

All the observers Binary, Octal and Hexa) can access the state. And
whenever the state value will change, it will change in the all observers

